Oppimisanalytiikan haasteita

Artikkeli julkaistu SeOppi 2/2017 -lehdessä.

Teksti: Lasse Seppänen, HAMK

Oppimisanalytiikan haasteita - SeOppi-lehden artikkelisiviOppimisanalytiikasta on tulossa suosittu toiminto opiskelijahallinnon saralla. Opintosuorituksia tai keskeyttämisvaarassa olevia opiskelijoita voidaan seurata. Jos opiskelijan aktiivisuus laskee kesken opintojen, pelkkiä opintosuorituksia seuraamalla tämä havaittaisiin pahimmassa tapauksessa vasta seuraavana vuonna.

Tässä tutkimuksessa pyrittiin seuraamaan viikoittaisia sisäänkirjautumisia oppimisalustalle. Syksyllä 2016 rakennettiin Poluttamo-hankkeessa HAMKissa järjestelmä, joka seuraa sisäänkirjautumisia ja lähettää opolle viikoittaisen viestin alentuneen sisäänkirjautumismäärän opiskelijoista. Kohderyhmänä olivat aluksi tietojenkäsittelyn opiskelijat, mutta myös muiden koulutusten opiskelijoita on sittemmin otettu mukaan.

Tietojenkäsittelyssä keskeyttämiset tapahtuvat useimmiten ensimmäisen vuoden aikana tai lopussa opinnäytetyö jää roikkumaan. On tärkeä havaita ensimmäisen vuoden opiskelijoista aikaisin keskeyttämisvaarassa olevat. Opinnäytetyöprosessia on muutettu vuonna 2017 siten, että se ei helposti jää kesken.

Tietojenkäsittelyssä Moodle-oppimisalusta on paljon käytössä. Moodlea käytetään hyvin paljon kahden ensimmäisen vuoden aikana jokaisella opinnolla, ja opiskelijoiden on käytännössä käytettävä sitä päivittäin tai lähes päivittäin. Tähän perustuvat kehitetyt algoritmit.

HAMKin työpäivämallin päivä on jaettu lounastauolla kahteen osaan. On luonnollista ajatella, että opiskelijat kirjautuisivat Moodleen ainakin kahdesti päivässä, jolloin viikossa tulisi ainakin 10 sisäänkirjautumista. Mutta opiskelijat tekevät paljon ryhmätöitä, joten yksi ryhmäläinen tekee palautukset kaikkien puolesta. Tämä voi laskea ryhmäläisten sisäänkirjautumisfrekvenssiä, vaikka he muuten opiskelisivatkin aktiivisesti.

Tutkimuksessa valittiin kynnysarvoksi viikoittaisten sisäänkirjautumisten seuraamisessa aluksi neljä. Looginen päätelmä oli, että jos opiskelija kirjautuu vain 0-3 kertaa sisään Moodleen, kaikki ei voi olla kunnossa. Jatkossa kynnysarvo nostettiin koeluontoisesti kahdeksaan, jolloin todettiin tulevan paljon myös hyvin pärjäävien opiskelijoiden tietoja. Määrä laskettiin kuuteen. Näin päästiin sähköposteissa pienempään ja helpommin hallittavaan tietomäärään. Todennäköisesti tätäkin kynnysarvoa vielä tarkastellaan.

Verkkotutkinnon iltaopiskelijoiden aktiivisuutta alettiin seurata samoin kynnysarvoin. Todettiin, että sama kynnysarvo ei toimi kunnolla. Esimerkiksi kynnysarvolla kuusi viikolla 39 järjestelmä hälyttää 24:stä opiskelijasta. Näistä nolla kertaa on vain viidellä opiskelijalla, 3-5 kertaa 11 opiskelijalla. Tästä huomataan selvä käyttäytymisero päiväpuolen opiskelijoihin nähden eli opiskelijat tekevät enemmän yhden kirjautumiskerran aikana.

Tietosuoja-asetus tuo haasteita

Uusi tietosuoja-asetus tuo haasteita oppimisanalytiikan käyttämiseen. Henkilörekisteriksi voidaan tulkita jokainen opiskelijoiden nimiä sisältävä lista, jollainen viikoittainen analytiikan tuottama sähköposti on. Käytössä on myös tulkinta, että analytiikkaa voisi käyttää, jos sillä ei ole vaikutusta yksittäiseen opiskelijaan. Tämän analytiikan tarkoituksena taasen on, että opo voisi nimenomaan kontaktoida yksittäistä opiskelijaa helposti. Lisäksi tämä analytiikka profiloi opiskelijoita. Pitää miettiä miten saadaan analytiikka jatkossa toimimaan asetuksen mukaisesti, jotta voimme tukea vaikeuksissa olevia opiskelijoita.

Lähteet

Oppimisanalytiikan keskus. Mitä on Oppimisanalytiikka? http://www.learninganalytics.fi/fi/oppimisanalytiikka

Seppänen, L. Learning analytics call out for action, SeOppi 02/2016

ITK-teemaseminaari: Multimodaalisuus ja oppiminen – haasteita ja mahdollisuuksia

Merja Saarelan esitysaineisto ITK-teemaseminaarista:

ITK 2017: Multimodaalisuus ja oppiminen

Jaana Kullaslahden ja Taina Juurakko-Paavolan esitysaineisto:

 

Tilaisuudessa oli jaossa Appsit ja multimodaalisuus oppimisen tukena -opas. Lisää oppaita löytyy Hämeen ammattikorkeakoulun Avustavan teknologian verstaan Oppaat-sivulta.

Moodlen login-tiedoista tehtyjä keskeytyspäätelmiä, versio 1

Tutkin lukuvuoden 2014-2015 tietojenkäsittelyn opiskelijoiden ensimmäisen vuoden ryhmän TRTKNU14A3 login-tietoja Moodlesta. Tiedot oli opiskelijakohtaisesti järjestetty siten, että jokaisen opiskelijan viikon aikana tekemät Moodle-aktiviteetit oli summattu yhteen. Tiedot toimitti HAMKin tietohallinto. Lisäsin näihin tietoihin ns. nollarivit eli jos opiskelija ei ollut viikon aikana lainkaan käynyt Moodlessa, hänestä ei jäänyt mitään jälkeä. Käsittelin näistä tiedoista ainoastaan Moodleen sisäänkirjautumista.

Aluksi käytin Power BI –työkaluohjelmistoa. Sillä tarkastelin opo Maija Kerkolan kanssa ryhmän NU14 käyttäytymistä.

Silmämääräisesti huomasimme, että joillakin opiskelijoilla toisen periodin aikainen käyttäytyminen poikkesi valtavirrasta huonompana aktiivisuutena. Näillä opiskelijoilla opinnot käytännössä keskeytyivät. Osa heistä on vielä kirjoilla, mutta käytännössä he eivät opiskele lainkaan.

Kirjoitin sen jälkeen 80-rivisen ohjelman perl-ohjelmointikielellä. Siinä tutkin erilaisia algoritmeja. Algoritmi, joka olisi paljastanut keskeyttäneistä kaikki muut paitsi yhden yliopistoon siirtyneen:

If (logins[viikko46] < 4 or logins[viikko47] < 4 or logins[viikko48] < 4 or logins[viikko7] = 0 or logins[viikko11] = 0)

{

Keskeytys();

}

Tätä algoritmia voi ajaa viikosta 47 alkaen viikottain, kun viikon 46 data on jo tallessa.

Algoritmi on niin tarkka, että se tuotti vain yhden hudin opiskelijasta, joka oli viikon marraskuussa matkoilla. Hänen opintonsa jatkuvat edelleen mallikkaasti.

Algoritmia voisi vielä tarkentaa siten, että se huomaisi viikoilla 46-48 laskevan login-aktivisuuden, mutta tämäkin näyttää varsin hyvin toimivan.

Tämä on siis yhden vuoden lukujen perusteella. Voi olla, että vuodet ovat erilaiset keskenään, opetus voi olla erilaista eri aikoihin sijoitettua jne.

Samaa algoritmia tuskin voi soveltaa ihan suoraan muihin koulutusohjelmiin, mutta yleisesti ottaen tätä menetelmää kannattaa kyllä kokeilla.

Seuraavaksi on tarkoitus tutkia tätä vuoden 2015-2016 datalla.

Teksti: Lasse Seppänen